Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids.

نویسندگان

  • F Josse
  • F Bender
  • R W Cernose
چکیده

The design and performance of guided shear horizontal surface acoustic wave (guided SH-SAW) devices on LiTaO3 substrates are investigated for high-sensitivity chemical and biochemical sensors in liquids. Despite their structural similarity to Rayleigh SAW, SH-SAWs often propagate slightly deeper within the substrate, hence preventing the implementation of high-sensitivity detectors. The device sensitivity to mass and viscoelastic loading is increased using a thin guiding layer on the device surface. Because of their relatively low shear wave velocity, various polymers including poly(methyl methacrylate) (PMMA) and cyanoethyl cellulose (cured or cross-linked) are investigated as the guiding layers to trap the acoustic energy near the sensing surface. The devices have been tested in biosensing and chemical sensing experiments. Suitable design principles for these applications are discussed with regard to wave guidance, electrical passivation of the interdigital transducers from the liquid environments, acoustic loss, and sensor signal distortion. In biosensing experiments, using near-optimal PMMA thickness of approximately 2 microm, mass sensitivity greater than 1500 Hz/(ng/mm2) is demonstrated, resulting in a minimum detection limit less than 20 pg/mm2. For chemical sensor experiments, it is found that optimal waveguide thickness must be modified to account for the chemically sensitive layer which also acts to guide the SH-SAW. A detection limit of 780 (3 x peak-to-peak noise) or 180 ppb (3 x rms noise) is estimated from the present measurements for some organic compounds in water.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review

This review presents a deep insight into the Surface Generated Acoustic Wave (SGAW) technology for biosensing applications, based on more than 40 years of technological and scientific developments. In the last 20 years, SGAWs have been attracting the attention of the biochemical scientific community, due to the fact that some of these devices - Shear Horizontal Surface Acoustic Wave (SH-SAW), S...

متن کامل

Theoretical mass, liquid, and polymer sensitivity of acoustic wave sensors with viscoelastic guiding layers

The theoretical sensitivity of Love wave and layer-guided shear horizontal acoustic plate mode ~SH-APM! sensors for viscoelastic guiding layers and general loading by viscoelastic materials is developed. A dispersion equation previously derived for a system of three rigidly coupled elastic mass layers is modified so that the second and third layers can be viscoelastic. The inclusion of viscoela...

متن کامل

Analysis of liquid-phase chemical detection using guided shear horizontal-surface acoustic wave sensors.

Direct chemical sensing in liquid environments using polymer-guided shear horizontal surface acoustic wave sensor platforms on 36 degrees rotated Y-cut LiTaO3 is investigated. Design considerations for optimizing these devices for liquid-phase detection are systematically explored. Two different sensor geometries are experimentally and theoretically analyzed. Dual delay line devices are used wi...

متن کامل

A Rapid and Sensitive Antigen Capture Test for the Detection Specific Cells on Shear Horizontal Surface Acoustic Wave Sensors

Cell separation techniques are used widely in immunology studies. The one-step antigen-specific separation technique on a microfluidic platform based on shear horizontal surface acoustic wave (SH-SAW) sensors. With the specific antibodies conjugated onto the surface of the SH-SAW sensors could be used to specifically recognize the specific cells in the clinical body fluids. The cell isolation a...

متن کامل

Acoustic physics of surface-attached biochemical species.

In this Commentary, we discuss the paper Quantitative Determination of Size and Shape of Surface-Bound DNA Using an Acoustic Wave Sensor [Tsortos et al., Biophys. J. 94(7), 2706-2715 (2008)]. The paper under discussion presents a novel theory that uses the response of a Shear-Horizontal Surface Acoustic Wave device to characterize surface-attached double- and triple-strand DNA. The authors rela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 73 24  شماره 

صفحات  -

تاریخ انتشار 2001